

Fig. 1. Structure of $\mathrm{TlBr}_{3} .2$ (pyridine) showing intermolecular distances and angles (e.s.d.'s $\sim 0.01 \AA, 0.4^{\circ}$).
1979) which are trigonal bipyramidal. The $\mathrm{Tl}-\mathrm{N}$ distances [av. 2.44 (2) \AA] compare with average values $2 \cdot 364$ (8) \AA in $\mathrm{TICl}_{3} .(1,10$-phenanthroline) (Baxter \& Gafner, 1972) and 2.43 (2) \AA in $\mathrm{TlCl}_{3} .3$ (pyridine) (Jeffs, Small \& Worrall, 1984c). The large distortions in the equatorial $\mathrm{Br}-\mathrm{Tl}-\mathrm{Br}$ angles (112.9-131.1年) and the planarity of all eight heavy atoms indicate a weak but significant interaction between Br and Tl atoms on pairs of adjacent molecules (Fig. 1).

It should be noted that the separation of the bridging Br atoms, $3.97 \AA$, is the van der Waals value; closer approach of the bridged Tl and Br in adjacent molecules would either shorten this distance or increase the distortion of the $\mathrm{Br}-\mathrm{Tl}-\mathrm{Br}$ angle. The compound may be regarded as being intermediate between
five-coordinate monomers, e.g. TlBr_{3}. dioxane, and six-coordinate halogen-bridged dimers, e.g. TlCl_{3}.(1,10 -phenanthroline). Stronger bridging bonds would be expected in $\mathrm{TlCl}_{3} .2$ (pyridine) since the more electronegative Cl will enhance the Lewis acid strength of thallium and favour dimer formation. Thallium compounds involving strongly electron-withdrawing groups, but with shorter halogen-bridging distances have already been reported, e.g. in five-coordinate $\left[\left(p-\mathrm{HC}_{6} \mathrm{~F}_{4}\right)_{2} \mathrm{TLX}\left(\mathrm{OPPh}_{3}\right)\right]_{2} \quad$ (Henrick, McPartlin, Matthews, Deacon \& Phillips, 1980) and in the four-coordinate halides $\left(p-\mathrm{HC}_{6} \mathrm{~F}_{4}\right)_{2} \mathrm{TLX}$ (Deacon, Phillips, Henrick \& McPartlin, 1979) ($X=\mathrm{Cl}, \mathrm{Br}$).

References

BAXTER, J. \& GAFNER, G. (1972). Inorg. Chem. 11, 176-178.
Boardman, A., Small, R. W. H. \& Worrall, I. J. (1983). Acta Cryst. C39, 433-435.
Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A 24, 321-324.
Deacon, G. B., Phillips, R. J. P., Henrick, K. \& McPartlin, M. (1979). Inorg. Chim. Acta, 35, 335-337.

Glaser, J. (1979). Acta Chem. Scand. Ser. A, 33, 789-794.
Henrick, K., McPartlin, M., Matthews, R. W., Deacon, G. B. \& Phillips, R. J. P. (1980). J. Organomet. Chem. 193, 13-21.
Jeffs, S. E., Small, R. W. H. \& Worrall, I. J. (1984a). Acta Cryst. C40, 1628-1630.
Jeffs, S. E., Small, R. W. H. \& Worrall, I. J. (1984b). Acta Cryst. C40. Submitted.
Jeffs, S. E., Small, R. W. H. \& Worrall, I. J. (1984c). Unpublished work.
Lobovskil, E. B., Korobov, I. I. \& Semenko, K. N. (1978). J. Struct. Chem. (USSR), 19, 908-914.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sinclair, I., Small, R. W. H. \& Worrall, I. J. (1981). Acta Cryst. B37, 1290-1292.
Veidis, M. V. \& Palenik, G. J. (1969). Chem. Commun. pp. 586-587.
Walton, R. A. (1968). Inorg. Chem. 7, 640-648.

The Structure of Bis[2-amino-2-hydroxymethyl-1,3-propanediolato(1-)-O,N]copper(II)Sodium Perchlorate Monohydrate, $\left[\mathrm{Cu}\left(\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{NO}_{3}\right)_{2}\right] \cdot \mathrm{NaClO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}^{*}$

By Gun J. M. Ivarsson
Department of Inorganic Chemistry, University of Umeå, S-901 87 Umeä, Sweden

(Received 10 January 1983; accepted 22 September 1983)

$1.697(1), \quad D_{m}=1.70(1) \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{Mo} K \alpha)=$ $0.71073 \AA, \quad \mu($ Mo $K \alpha)=1.54 \mathrm{~mm}^{-1}, \quad F(000)=916$, $T=293$ K. $R=0.044$ for 2826 reflections. The structure consists of uncharged $\mathrm{Cu}\left[\mathrm{NH}_{2} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{O}\right)\right.$ $\left.\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{2}\right]_{2}$ complexes, $\mathrm{Na}^{+}, \mathrm{ClO}_{4}^{-}$and water. The Cu
coordination is a square-planar $\mathrm{CuN}_{2} \mathrm{O}_{2}$ chromophore, with the distances $\mathrm{Cu}-\mathrm{N}=1.999$ (2) and $\mathrm{Cu}-\mathrm{O}$ (deprotonated) $=1.908(2) \AA$. The Na atom is situated at a centre of symmetry and is octahedrally surrounded by oxygens from the Cu -bonded ligand, the perchlorate group and the water molecule; distances $\mathrm{Na}-\mathrm{O}=$ 2.334 (2), 2.516 (3) and 2.305 (3) \AA respectively. The Cu complexes are thus connected via electrostatic $\mathrm{O}-\mathrm{Na}-\mathrm{O}$ bridges in addition to hydrogen bonds.

Introduction. The buffer region of 2-amino-2-hydroxymethyl-1,3-propanediol (H_{3} tham) covers the physiological pH range and H_{3} tham is therefore a favoured buffer in biochemical studies. As all pH buffers contain a basic site they are potential ligands for metal ions. Statements have been made that chelates with H_{3} tham are formed in aqueous solutions with the basic amino group forming a binding site (Kemula, Brachaczek \& Hulanicki, 1962; Bai \& Martell, 1969; Brignac \& Mo, 1975; Fischer, Haring, Tribolet \& Sigel, 1979). It is also predicted that a proton is lost from the metal-bonded hydroxyl oxygen of H_{3} tham at least when copper is involved, i.e. $\mathrm{Cu}\left(\mathrm{H}_{2} \text { tham }\right)_{2}$ is formed (Hall, Swisher, Brannon \& Lidén, 1962; Bai \& Martell, 1969). Non-aqueous solution data, collected by Dotson (1972), indicated that a proton was removed from the hydroxyl O atom of the ligand when coordinated to certain metallic ions. As no complete crystal structure determination of $M\left(\mathrm{H}_{3}\right.$ tham) compounds (mere structural suggestions are available) could be found in the literature an X-ray crystal structure investigation was undertaken. So far the $\mathrm{Ni}\left(\mathrm{H}_{3} \text { tham }\right)_{2}$ [or $\mathrm{Ni}(\text { tris })_{2}$] structure has been published (Ivarsson, 1982) and in this paper the molecular and crystal structure of $\mathrm{Cu}\left(\mathrm{H}_{2} \text { tham }\right)_{2}$ is presented.

Experimental. NaOH solution was added to a blue solution with the composition $\left[\mathrm{Cu}^{2+}\right]=0.25 \mathrm{M}$, $\left[\mathrm{H}_{3}\right.$ tham $]=0.50 \mathrm{M}$ and $\left[\mathrm{ClO}_{4}^{-}\right]=3.0 \mathrm{M}$. At $\mathrm{pH} \sim 9.5$ the solution turned violet and crystals were formed, one such, ca $0.24 \times 0.28 \times 0.30 \mathrm{~mm}$, used for structure analysis; D_{m} by flotation in $\mathrm{CCl}_{4}-\mathrm{CHBr}_{3}$, Syntex $R 3$ four-circle diffractometer, graphite-monochromatized Mo $K \alpha, 3749$ reflections $\pm h k l$ with $2 \theta<65^{\circ}, 2826$ with $I \geq 2 \sigma(I), \mathrm{Lp}$ correction, empirical absorption correction (transmission factors $0 \cdot 785-1 \cdot 000$), standard reflections: $\overline{2} \overline{2} 6,3 \overline{3} \overline{3}, 3 \overline{1} 1$; Patterson synthesis and standard Fourier methods, anisotropic full-matrix refinement minimizing $\sum(\Delta F)^{2}, \mathrm{H}$ (from ΔF synthesis) isotropic $\left(B=4 \AA^{2}\right)$, final $R=0.044, w R=0.051$, $w=1 /\left\{\left[1.5 \sigma\left(F_{o}\right)\right]^{2}+\left(0.035 F_{o}\right)^{2}\right\} ;$ atomic scattering factors from International Tables for X-ray Crystallography (1974), $(\Delta / \sigma)_{\max }<10 \%$. Computer programs supplied with the Syntex $R 3$ crystallographic system, final calculations with programs described by Antti (1976). DG Nova 3, CD Cyber 1972, computers of the

Department of Inorganic Chemistry, Umeå, and the University of Umeå respectively.

Discussion. Final atomic positional parameters are given in Table 1.*

The structure is built up from uncharged $\mathrm{Cu}\left[\mathrm{NH}_{2} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{O}\right)\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{2}\right]_{2}$ complexes, Na^{+}and ClO_{4}^{-}ions and water molecules. The Cu complexes are connected in a three-dimensional framework by electrostatic $\mathrm{O}-\mathrm{Na}-\mathrm{O}$ bridges and hydrogen bonds (Fig. 1).

In the $\mathrm{Cu}\left[\mathrm{HN}_{2} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{O}\right)\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{2}\right]_{2}$ complex, the metal ion lies at a centre of symmetry, surrounded by two bidentate H_{2} tham ligands in a square-planar arrangement. Each ligand is attached to the Cu atom by an amino group, $\mathrm{Cu}-\mathrm{N}=1.999$ (2) \AA, and a deprotonated hydroxymethyl oxygen, $\mathrm{Cu}-\mathrm{O}=1.908$ (2) \AA. For symmetry reasons the atoms

are coplanar, with the angle $\mathrm{N}-\mathrm{Cu}-\mathrm{O}^{\prime}=94.1$ (3) ${ }^{\circ}$. The $\mathrm{Cu}-\mathrm{N}$ distance is of the same order as found in other Cu -amino bonds (Ivarsson, Lundberg \& Ingri, 1972). According to Hathaway \& Hodgson (1973) a normal short $\mathrm{Cu}-\mathrm{O}$ distance is ca $2.00 \AA$ but $\mathrm{Cu}-\mathrm{O}$ distances of $1.90 \AA$ are frequent in square-coplanar Cu complexes. An effect of the metal interaction on bonding distances within the ligand is only noticed in the $\mathrm{N}-\mathrm{C}(4)$ bond, which is significantly longer than the corresponding bond in the 'non-metal-bonding' H_{3} tham, 1.490 (3) and 1.472 (2) \AA respectively. The same situation occurs in the $\mathrm{Ni}-\mathrm{H}_{3}$ tham interaction (Ivarsson, 1982). Distances and angles are given in Table 2.

The sodium-oxygen arrangement: The Na^{+}ion coordinates in an octahedral arrangement of six O atoms, two each from water molecules, \dagger perchlorate groups \dagger and OH groups \dagger from H_{2} tham. The Na^{+}in this structure is a central ion in the bridging framework since it bridges the Cu complexes in addition to forming $-\mathrm{Na}-\mathrm{ClO}_{4}-\mathrm{Na}-\mathrm{ClO}_{4}-$ connection chains.

The perchlorate group: Owing to the symmetry there are only two different oxygens in the perchlorate group. $\mathrm{O}(4)$ is connected to the Na^{+}ion and $\mathrm{O}(5)$ is connected to the amino group of the Cu complex via a hydrogen bond $[\mathrm{O}(5)-\mathrm{N}=3.184(3) \AA]$. The $\mathrm{O}(4)$ atoms are

[^0]situated in the axial position of an octahedral Cu coordination, but the distance 3.414 (2) \AA indicates a very weak interaction.

The $\mathrm{Cl}-\mathrm{O}$ distances are approximately equal and in good agreement with values found in earlier investigations.

The hydrogen-bond system (Fig. 2): Two short hydrogen-bond distances are found from the deprotonated metal-bonded hydroxymethyl group, one to the water molecule, $\mathrm{Aq}-\mathrm{O}(1)=2.678$ (4) \AA, and one to the non-metal-bonded hydroxymethyl group from an adjacent Cu complex, $\mathrm{O}(1)-\mathrm{O}(2)=2.603$ (2) \AA. Besides the above-mentioned hydrogen bond the water molecule is also linked with an adjacent water molecule
forming a

Table 1. Fractional atomic coordinates ($\times 10^{4}$) and the equivalent isotropic thermal parameters with e.s.d.'s in parentheses

$$
B_{\mathrm{cq}}=\frac{4}{3}\left(a^{2} \beta_{11}+b^{2} \beta_{22}+c^{2} \beta_{33}+2 a c \beta_{13} \cos \beta\right) .
$$

	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
Cu	2500	2500	5000	$1 \cdot 89(1)$
N	$2331(1)$	$3953(2)$	$3916(2)$	$2 \cdot 16(4)$
$\mathrm{C}(1)$	$1210(1)$	$4332(2)$	$5326(2)$	$2 \cdot 36(5)$
$\mathrm{C}(2)$	$1442(2)$	$5924(2)$	$3771(2)$	$2 \cdot 93(5)$
$\mathrm{C}(3)$	$2719(2)$	$5515(2)$	$5460(2)$	$2 \cdot 61(5)$
$\mathrm{C}(4)$	$1921(1)$	$4949(2)$	$4602(2)$	$2 \cdot 01(4)$
$\mathrm{O}(1)$	$1603(1)$	$3264(2)$	$5901(2)$	$2 \cdot 25(4)$
$\mathrm{O}(2)$	$2121(1)$	$6585(2)$	$3199(2)$	$3.72(5)$
$\mathrm{O}(3)$	$3503(1)$	$5879(2)$	$4863(2)$	$3.35(5)$
$\mathrm{O}(4)$	$0465(2)$	$1470(3)$	$3441(2)$	$4.71(9)$
$\mathrm{O}(5)$	$0686(2)$	$2939(3)$	$2028(2)$	$6 \cdot 77(9)$
Cl	0	$2197(2)$	$2500(2)$	$2 \cdot 82(2)$
Aq	$4557(3)$	$3531(3)$	$3572(3)$	$6.16(15)$
Na	5000	5000	5000	$2 \cdot 38(4)$

Fig. 1. Perspective view of the Cu complex unit (ORTEP; Johnson, 1976).

Table 2. Distances (\AA) and angles $\left(^{\circ}\right)$ with e.s.d.'s in parentheses

$\mathrm{Cu}-\mathrm{O}(1)$	1.908 (2)	$\mathrm{O}(1)-\mathrm{Cu}-\mathrm{N}$	94.1 (1)
$\mathrm{Cu}-\mathrm{N}$	1.999 (2)	$\mathrm{O}(1)^{*}-\mathrm{Cu}-\mathrm{N}$	85.9 (1)
		$\mathrm{Cu}-\mathrm{O}(1)-\mathrm{C}(1)$	112.1 (1)
		$\mathrm{Cu}-\mathrm{N}-\mathrm{C}(4)$	107.3
$\mathrm{O}(1)-\mathrm{C}(1)$	1.419 (3)	$\mathrm{C}(1)-\mathrm{C}(4)-\mathrm{C}(2)$	110.7 (2)
$\mathrm{O}(2)-\mathrm{C}(2)$	1.417 (3)	$\mathrm{C}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	109.7 (2)
$\mathrm{O}(3)-\mathrm{C}(3)$	1.423 (3)	$\mathrm{C}(1)-\mathrm{C}(4)-\mathrm{N}$	105.8 (2)
$\mathrm{N}-\mathrm{C}(4)$	1.490 (3)	$\mathrm{C}(2)-\mathrm{C}(4)-\mathrm{C}(3)$	110.5 (2)
$\mathrm{C}(1)-\mathrm{C}(4)$	1.525 (3)	$\mathrm{C}(2)-\mathrm{C}(4)-\mathrm{N}$	111.9 (2)
$\mathrm{C}(2)-\mathrm{C}(4)$	1.527 (3)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{N}$	108.0 (2)
C(3)-C(4)	1.538 (3)	$\mathrm{C}(4)-\mathrm{C}(1)-\mathrm{O}(1)$	110.6 (2)
		$\mathrm{C}(4)-\mathrm{C}(2)-\mathrm{O}(2)$	110.4 (2)
		$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{O}(3)$	112.8 (2)
$\mathrm{Na}-\mathrm{O}(3)$	2.334 (2)	$\mathrm{O}(3)-\mathrm{Na}-\mathrm{O}(4)$	90.0 (2)
$\mathrm{Na}-\mathrm{O}$ (4)	$2 \cdot 516$ (3)	$\mathrm{O}(3)-\mathrm{Na}-\AA \mathrm{A}$	92.2 (1)
$\mathrm{Na}-\mathrm{Aq}$	2.305 (3)	$\mathrm{O}(4)-\mathrm{Na}-\mathrm{Aq}$	93.6.(2)
$\mathrm{Cl}-\mathrm{O}(4)$	1.425 (3)	$\mathrm{O}(4)-\mathrm{Cl}-\mathrm{O}^{*}(4)$	112.1 (2)
$\mathrm{Cl}-\mathrm{O}(5)$	1.418 (3)	$\mathrm{O}(4)-\mathrm{Cl}-\mathrm{O}(5)$	$108 \cdot 1$ (2)
		$\mathrm{O}(4)-\mathrm{Cl}-\mathrm{O}^{*}(5)$	109.2 (2)
		$\mathrm{O}(5)-\mathrm{Cl}-\mathrm{O}^{*}(5)$	$110 \cdot 2$ (2)

* Symmetry operation $\frac{1}{2}-x, \frac{1}{2}-y, z$ applied.

Fig. 2. A stereoscopic representation of the structure. Hydrogen bonds are indicated by dashed lines. Thermal ellipsoids enclose 50\% probability.

References

Antti, B.-M. (1976). Acta Chem. Scand. Ser. A, 30, 24-30.
Bal, K. S. \& Martell, A. E. (1969). J. Inorg. Nucl. Chem. 31, 1697-1707.
Brignac, P. J. Jr \& Mo, C. (1975). Anal. Chem. 47, 1465-1466.
Dotson, R. L. (1972). J. Inorg. Nucl. Chem. 34, 3131-3138.
Fischer, B. E., Haring, U. K., Tribolet, R. \& Sigel, H. (1979). Eur.J. Biochem. 94, 523-530.
Hall, J. L., Swisher, J. A., Brannon, D. G. \& Lidén, T. M. (1962). Inorg. Chem. 1, 409-413.

Hathaway, B. J. \& Hodgson, P. G. (1973). J. Inorg. Nucl. Chem. 35, 4071-4081.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.
Ivarsson, G. J. M. (1982). Acta Cryst. B38, 1828-1831.
Ivarsson, G. J. M., Lundberg, B. K. S. \& Ingri, N. (1972). Acta Chem. Scand. 26, 3005-3020.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee.
Kemula, W., Brachaczek, W. \& Hulanicki, A. (1962). Rocz. Chem. 36, 1727-1735.

[^0]: * Lists of structure factors and anisotropic thermal parameters, fractional atomic coordinates for H atoms and hydrogen-bond distances have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 38899 (18 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.
 \dagger Symmetry operation $\frac{1}{2}-x, \frac{1}{2}-y, z$ applied.

